
R1 Live Workshop

October 9, 2023

https://nephio.org/learn

- John Belamaric, Google
- Anh Thu Vo
- Ravi Ravindran, F5 Networks
- Sandeep Sharma, Aarna
- Victor Morales, Samsung
- Vish Jayaraman, Red Hat

Our Journey Today

● Introduction [5m]

● Installation [5m]
○ https://github.com/nephio-project/docs/tree/v1.0.1/install-guide

● Exercises - Theory & Practice [60m]
○ https://github.com/nephio-project/docs/blob/v1.0.1/user-guide/exercises.md
○ Create regional cluster
○ Deploy edge clusters
○ Deploy regional free5gc control plane
○ Deploy free5gc operator to the regional and edge clusters
○ Deploy AMF, SMF, UPF
○ Deploy UERANSIM (not shown)
○ Change in capacity required ⇒ change in CPU and memory

● Q & A [15m]
2

https://github.com/nephio-project/docs/tree/v1.0.1/install-guide
https://github.com/nephio-project/docs/blob/v1.0.1/user-guide/exercises.md

Nephio Scope

“Swimlanes”
1. Infrastructure
2. Workload (network function)
3. Workload configuration

R1 Demonstrates Some of Each
1. Cluster provisioning
2. Network function provisioning
3. NF config file generation in

operator

Very High Level Nephio Architecture

Users

Clusters
Edge, Infra Mgmt

Repositories
Cloud Source Repo

Repositories
Git or OCI

Porch API
kpt-as-a-service

Kpt CLI>_

ControllersGUI

Platform enabling users and automation agents to
cooperatively interact with and deploy configuration

Central Nephio K8s cluster houses GUI service,
Porch APIs, and Nephio Controllers

Users manipulate config packages which Porch
pushes to Git or OCI repositories

Downstream clusters consume those via Config
Sync, which applies them to the K8s API server

Same process for infrastructure - using for example
KCC to create clusters, as for workloads

Starting Place

VM

End Result

Management
Cluster

Install

Sandbox
provisioning

Requirements:
• Vagrant CLI (https://developer.hashicorp.com/vagrant/downloads)
• Providers:

• Libvirt provider (https://github.com/vagrant-libvirt/vagrant-libvirt)
• GCE Provider(https://github.com/mitchellh/vagrant-google)

https://github.com/nephio-project/test-infra/blob/main/e2e/provision/Vagrantfile

$ NEPHIO_DEBUG=false GOOGLE_PROJECT_ID=pure-faculty-367518
GOOGLE_JSON_KEY_LOCATION=~/.config/gcloud/pure-faculty-367518-f1afca4feb6b.json
NEPHIO_USER=$USER RUN_E2E=true vagrant up --provider google

init.sh

install_sandbox.sh

e2e.sh

Roles:
● Bootstrap
● Install

https://developer.hashicorp.com/vagrant/downloads
https://github.com/vagrant-libvirt/vagrant-libvirt
https://github.com/mitchellh/vagrant-google
https://github.com/nephio-project/test-infra/blob/main/e2e/provision/Vagrantfile

Nephio Installation in a Nutshell

https://github.com/nephio-project/docs/blob/main/install-guide/common-components.md

The following kpt packages are needed:

● Porch -
https://github.com/nephio-project/nephio-example-packages/tree/main/porch-dev

● Nephio Controllers -
https://github.com/nephio-project/nephio-example-packages/tree/main/nephio-controllers

● Management Cluster GitOps Tool -
https://github.com/nephio-project/nephio-example-packages/tree/main/configsync

● Nephio Stock Repositories (optional) -
https://github.com/nephio-project/nephio-example-packages/tree/main/nephio-stock-repos

https://github.com/nephio-project/docs/blob/main/install-guide/common-components.md
https://github.com/nephio-project/nephio-example-packages/tree/main/porch-dev
https://github.com/nephio-project/nephio-example-packages/tree/main/nephio-controllers
https://github.com/nephio-project/nephio-example-packages/tree/main/configsync
https://github.com/nephio-project/nephio-example-packages/tree/main/nephio-stock-repos

○ Concepts
■ Package
■ Package Management
■ Automation & Scaling Package Deployment

○ Demo
■ Create Regional Cluster
■ Deploy Edge Clusters
■ Deploy Regional Free5gc Control Plane

(not including AMF and SMF)
■ Deploy Free5gc Operator

What is Kubernetes Resource Model (KRM)

● A way to create a declarative configuration file in a readable format to
define the desired system state using code.

● Encourages separation of concerns by supporting multiple distinct
configuration sources and preserving declarative intent while allowing
automatically set attributes

https://github.com/kubernetes/design-proposals-archive/blob/main/architecture/resource-management.md
https://github.com/kptdev/kpt/blob/main/package-examples/nginx/deployment.yaml

KRM Function Specification

● Client side functions that operate on K8S declarative configurations are referred to
as KRM functions.

● Enables creating small, interoperable and language-independent executable
programs packaged as containers that can be chained together as part of a
configuration management pipeline.

● Pipeline functions execution results in configurations that can be applied to a
control plane

https://github.com/kubernetes-sigs/kustomize/blob/master/cmd/config/docs/api-conventions/functions-spec.md
https://github.com/kptdev/kpt/blob/main/package-examples/wordpress/Kptfile

KRM Functions - Use Cases

KRM functions enable shift-left-practices(client-side) through
● Pre-commit / delivery validation and linting of configuration

● e.g. Fail if any containers don't have CPU / Memory limits

● Implementation of abstractions as client actuated APIs
● e.g. Create a client-side "CRD" for generating configuration checked into git

● Injection of cross-cutting configuration
● e.g. T-Shirt size containers by annotating resources with small, medium, large and inject the cpu

and memory resources into containers accordingly.
● e.g. Inject init and side-car containers into resources based off of resource type, annotations,

etc.

Packages and Package Management

● What is a Package ?
○ Bundle of KRM
○ Some metadata
○ Function pipeline

● How to Manage Packages ?
○ Create, Modify, Deploy, and Delete

● Porch makes Packages available as
K8s APIs using

○ PackageRevision CR
○ PackageRevisionResources CR

● Higher level services
○ Package Repository Management
○ Package Discovery, Authoring and

Lifecycle Management

Scaling and Automating Package Management

● Designed to address several different dimensions of Scalability
● Number of different workloads for a given cluster
● Number of clusters across with those workloads are deployed
● Different types or characteristics of those clusters
● Complexity of the organizations deploying those workloads
● Changes to those workloads over time

● Using PackageVariant and PackageVariantSet
● Apply any Context or Resource outside the Package’s Context, e.g.Cluster, Infra, Service etc.

● Allows for automating the creation and lifecycle management of
package variants.

● E.g; Across a fleet of clusters, it may be necessary to modify workload configuration for a
specific cluster

● Manages the deviation of a variant of a package from the original
source package, and manage the evolution of that variant over
time.

PackageVariant CR / PackageVariant Controller

● Takes instance of the Upstream Blueprint
package and clones as draft Deployment Repo
applying several transformations

● Affect KPT Pipeline in the original Package

● Manage the Package Context (Configmap)
○ Customized Key:Value pairs

● Specify Injectors
○ Inject cluster KRM into the new Copy of the Blueprint

Package

PackageVariantSet CR and PVS Controller

● Handles large scale Fan Out scenarios

● The PVS Controller uses the reference to
the Upstream Blueprint Repository
Package in the CR and creates multiple
Package Variants

● Targeting criterion in the PVS
○ An explicit list of repositories and

package names
○ A label selector for Repository objects
○ An arbitrary object selector
○ Customize Injectors and Kpt pipelines

for each Package Variant

Example of a PVS and PV

Demo

- Creation of a Regional Cluster
- Using Manual KPT Commands

- Creation of Edge Clusters
- Using PackageVariantSet CR

- Deployment of Free5gc Control Plane
- Using Nephio WebUI

- Deployment of Free5gc Operator
- Using PackageVariantSet CR

○ Concepts
■ Config Injection
■ Package Specialization
■ Condition Choreography

○ Demo
■ Deploy AMF, SMF, UPF

Config Injection

1.Apply PackageVariant
Object

Spec:
 upstream:
 package: srcpkg
 …
 downtream:
 package: desiredpkg
 …
 injectors:
 - name: edge01
 …

srcpkg desiredpkg

Pv
controller

2.Clone and create draft
workload-cluster.yaml: |-
 apiVersion: infra.nephio.org/v1alpha1
 kind: WorkloadCluster
 metadata:
 name: workload-cluster
 annotations:
 config.kubernetes.io/local-config:
"true"
 kpt.dev/config-injection: required

One KRM in resource list has
config-injection required

1.process plugin points: parse through all the resources
in packagerevision and find the resources with injection
required.

2. Parse the pv.spec.injectors and find the kubernetes
objects, edge01 of kind workloadCluster in this case.

3. Fetch the workloadcluster object and inject it to the
packagerevision desiredpkg in the downstream repo

4.Update Kptfile with,
conditions:
 - type: config.injection.WorkloadCluster.workload-cluster
 status: "True"
 message: injected resource "edge01" from cluster
 reason: ConfigInjected

edge01
kind: worklodCluster

This object contains the contextual information
of the cluster which will later be consumed by
specializers fn/controllers

3. Injection procedure

Nephio Cluster

Specialization Pipeline and Condition Choreography

Kptfile

 pipeline:
 mutators:
 - image: gcr.io/kpt-fn/apply-replacements:v0.1.1
 configPath: apply-replacements-namespace.yaml
 - image: docker.io/nephio/upf-deploy-fn:v1.0.1
 - image: docker.io/nephio/interface-fn:v1.0.1

interface-fn

upf-deploym
ent-fn

ipclaim-fn

vlanclaim-fn

nad

dependency

 status:
 Conditions:
 Type: interface
 Status: not ready
 Type: vlanclaim
 Status: not ready
 Type: ipclaim
 Status: not ready
 ….

Kptfile1.saving packagerevision triggers
pipeline.
2. Functions create inventory of for,
owns and watch
3.Functions Update kptfile
conditions and save.

generic-specialiser

4.Reconces the
packagerevision, checks
conditions and invokes
corresponding functions

edge01
kind: worklodCluster

Ipam,vlan backend

6.Functions Keep updating
conditions in kpt file as
resources are allocated and
created

5.Consult the clustercontext object and
allocate ip vlan via the backend
controllers based on the kind of CNIs in
the target cluster

Eventually all resources all allocated, and all conditions in the KPTfile are set to
Ready by the condition choreography done by KRM fns/controllers. The result is the
deployment of UPFDeployment curated CR in the edge01 cluster

○ Concepts
■ Specialization Output to Workload Clusters
■ free5GC operators
■ Operators translate user API to K8s API

○ Demo
■ Capacity Changes

Creating and Updating UPF-edge01 and UPF-edge02

Sample UPF resources.go for Resource Mgmt (Optional)
github.com/nephio-project/free5gc/blob/main/controllers/upf/resources.go

func createResourceRequirements(upfDeploymentSpec
nephiov1alpha1.UPFDeploymentSpec) (int32,
*apiv1.ResourceRequirements, error) {…

if upfDeploymentSpec. Capacity.MaxDownlinkThroughput.Value() >
downlink.Value() {

cpuLimit = "1000m"

memoryLimit = "1Gi"

cpuRequest = "1000m"

memoryRequest = "1Gi"

} else {

cpuLimit = "500m"

memoryLimit = "512Mi"

cpuRequest = "500m"

memoryRequest = "512Mi"

}

resources := apiv1.ResourceRequirements{

Limits: apiv1.ResourceList{

apiv1.ResourceCPU:

resource.MustParse(cpuLimit),

apiv1.ResourceMemory:

resource.MustParse(memoryLimit),

},

Requests: apiv1.ResourceList{

apiv1.ResourceCPU:

resource.MustParse(cpuRequest),

apiv1.ResourceMemory:

resource.MustParse(memoryRequest),

},}

return replicas, &resources, nil

}

Everyone

Q&A

