
Why Nephio?
Nephio R1 Concepts and Tutorials
Episode 2
July 2023

John Belamaric, Sr Staff Software Engineer, Google
Nephio SIG Automation Chair
Kubernetes SIG Architecture Co-chair

https://nephio.org/learn

Prerequisites:
- Episode 1 - Series Introduction



Stepping Back

● Why cloud?
○ On-demand, API-driven consumption of data center resources

● Why MEC / Distributed Cloud?
○ On-demand, API-driven consumption of edge resources

● Managing workloads on cloud is hard
○ Many projects for this in areas like gitOps, App Delivery, 

Workflows, Platform Engineering
○ Not really a solved problem

● Managing workloads on thousands - or tens of thousands - of 
little clouds is much, much harder



cloud.google.com/about/locations

Imagine deploying 
complex, 
interconnected 
workloads across 
many geographically 
distributed sites.

https://cloud.google.com/about/locations


Simplified / Minimal 5G Network

CU-UP

CU-CP

RU

MEC

Observability & Analytics

Function 
Monitoring

SLO 
Monitoring

AnalyticsLoggingCNF

MEC

vDU

Service Policy Management

Service 
Mesh

Cluster 
Mgmt

Config 
Mgmt

Telco Remote Edge
100,000+ sites

Telco Pre-agg
1,000s sites

Cloud

AMF

Public Cloud Region
10s sites

SMFUPF

MEC

Telco Agg
100s sites



Planning, Planning, Planning

What does it take to roll this out? Some of it, for Day 1:

● Identify available, applicable sites - edge and cloud regions
● Determine which workloads should run where how they interconnect
● Determine the infrastructure needed - clusters, nodes, special 

hardware
● Configure cross-site networking: allocate subnets, IPs, VLANs, 

VRFs, etc.
● Configure the underlying nodes for specialized telco requirements
● Configure the workload specifications - their Kubernetes manifests
● Configure the workloads themselves to know about each other



Complexity, Complexity, Complexity

Day 2 adds more complexity:

● Monitor that the stated intent is still expressed
○ Workloads are up and running
○ Configuration hasn’t drifted

● Handle changes to topology
○ Spin up a new aggregation site, adding a UPF
○ UPF needs to talk to an SMF
○ Each of these needs to be configured to see each other

● Resize workloads as topology changes
○ As we add UPFs, we need to vertically scale the SMF.

● Enable upgrade of workloads and infrastructure with 
progressive rollout



It Gets Worse…

● Topology: Manually encoded in powerpoint slides and spreadsheets
○ Maybe end-to-end orchestration workflows

● Cloud infrastructure: Cloud Provider APIs
○ Maybe Terraform, scripts, or e2e orchestration

● Networking within and between sites: manual router configuration
○ Maybe some vendor or other proprietary automation

● Nodes: K8s extensions, manual or scripted kernel and other configs

● Workload specifications: stored in Kubernetes manifests, maybe in Git 
or scripts

● Workloads configs: proprietary, vendor-specific network element 
managers

Each layer is managed by different systems!



And Worse…

● Each layer and system has a different team, probably even 
broken up by region

● Existing methods such as Helm charts assume you have 
already figured out all the inputs

● Teams must negotiate all these values ahead of time on a 
per-site, per-workload basis

● Imagine…
○ 100 inputs per workload
○ 20 workloads per site
○ 10,000 sites

● That is 20,000,000 values!

Different systems means different teams.



What do we do? Where do we start?

● Consolidate on a single, unified platform for automation
○ Across infrastructure, workloads, workload configs, vendors 

and deployment tiers.

● Declarative configuration with active reconciliation to 
support days one and two.
○ And distribute state (intent) across geography for resilience

● Configuration that can be cooperatively managed by 
machines and humans. 
○ Machine-manipulable configuration is fundamental to 

automation.

Reduce Complexity


