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Stepping Back

● Why cloud?
○ On-demand, API-driven consumption of data center resources

● Why MEC / Distributed Cloud?
○ On-demand, API-driven consumption of edge resources

● Managing workloads on cloud is hard
○ Many projects for this in areas like gitOps, App Delivery, 

Workflows, Platform Engineering
○ Not really a solved problem

● Managing workloads on thousands - or tens of thousands - of 
little clouds is much, much harder



cloud.google.com/about/locations

Imagine deploying 
complex, 
interconnected 
workloads across 
many geographically 
distributed sites.

https://cloud.google.com/about/locations
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Planning, Planning, Planning

What does it take to roll this out? Some of it, for Day 1:

● Identify available, applicable sites - edge and cloud regions
● Determine which workloads should run where how they interconnect
● Determine the infrastructure needed - clusters, nodes, special 

hardware
● Configure cross-site networking: allocate subnets, IPs, VLANs, 

VRFs, etc.
● Configure the underlying nodes for specialized telco requirements
● Configure the workload specifications - their Kubernetes manifests
● Configure the workloads themselves to know about each other



Complexity, Complexity, Complexity

Day 2 adds more complexity:

● Monitor that the stated intent is still expressed
○ Workloads are up and running
○ Configuration hasn’t drifted

● Handle changes to topology
○ Spin up a new aggregation site, adding a UPF
○ UPF needs to talk to an SMF
○ Each of these needs to be configured to see each other

● Resize workloads as topology changes
○ As we add UPFs, we need to vertically scale the SMF.

● Enable upgrade of workloads and infrastructure with 
progressive rollout



It Gets Worse…

● Topology: Manually encoded in powerpoint slides and spreadsheets
○ Maybe end-to-end orchestration workflows

● Cloud infrastructure: Cloud Provider APIs
○ Maybe Terraform, scripts, or e2e orchestration

● Networking within and between sites: manual router configuration
○ Maybe some vendor or other proprietary automation

● Nodes: K8s extensions, manual or scripted kernel and other configs

● Workload specifications: stored in Kubernetes manifests, maybe in Git 
or scripts

● Workloads configs: proprietary, vendor-specific network element 
managers

Each layer is managed by different systems!



And Worse…

● Each layer and system has a different team, probably even 
broken up by region

● Existing methods such as Helm charts assume you have 
already figured out all the inputs

● Teams must negotiate all these values ahead of time on a 
per-site, per-workload basis

● Imagine…
○ 100 inputs per workload
○ 20 workloads per site
○ 10,000 sites

● That is 20,000,000 values!

Different systems means different teams.



What do we do? Where do we start?

● Consolidate on a single, unified platform for automation
○ Across infrastructure, workloads, workload configs, vendors 

and deployment tiers.

● Declarative configuration with active reconciliation to 
support days one and two.
○ And distribute state (intent) across geography for resilience

● Configuration that can be cooperatively managed by 
machines and humans. 
○ Machine-manipulable configuration is fundamental to 

automation.

Reduce Complexity


