
Nephio Security
Tech Talk

Nephio Security Considerations

● K8s-native design
○ Pod as an execution unit

● Having co-located workloads from different vendors has risks
● Heterogeneous environments
● Assume that basic security practices are in place:

○ Code Scanning
○ Secrets Scanning
○ Image Vulnerability Scanning
○ Cloud Account Configuration Scanning

Intent Driven Security Automation

● Intent driven security automation
○ Specify intent using k8s resource model
○ Deploy appropriate k8s resources to enforce given intent

Security
Intent

Security
Controls

Security
Enforcement

● Harden workloads
● Protect sensitive volume

assets

● ENISA
● MITRE FIGHT

● Pod Security Policies
● Admission Control Policies
● Runtime Security Controls

Security
Reporting

● OSCAL
● Policy Report CRD

Use-case: Securing RIC

● Multiple xApps from multiple vendors
● Shared Infrastructure.
● New deployment models

Static vs Admission vs Runtime Security

5

KubeArmor Runtime Security

Linux Security Modules for
policy enforcement

Inline remediation

Use of eBPF to knit kernel
events with k8s metadata

https://github.com/kubearmor/
kubearmor.io

6

https://kubearmor.io/

Inline Mitigation vs Post-Attack Mitigation

7

KubeArmor: Abstracting LSMs

● Makes LSMs easier to consume
○ Deploys as daemonset. Maps YAML rules to LSM (apparmor, bpf-lsm) rules.

● Consistent Alerting
○ Handles kernel events and maps k8s metadata using ebpf.

yaml

apparmor selinux bpf-lsm

apiVersion: security.kubearmor.com/v1
kind: KubeArmorPolicy
metadata:
 name: ksp-group-1-proc-path-block
 namespace: multiubuntu
spec:
 selector:
 matchLabels:
 group: group-1
 process:
 matchPaths:
 - path: /bin/sleep
 action:

 Block

/bin/sleep cx,

 profile /bin/sleep {

 /bin/sleep rix,

 #include <abstractions/base>

 umount,

 network,

 capability,

 /lib/x86_64-linux-gnu/{*,**} rm,

 /lib/{*,**} rm,

 /lib/modules/{*,**} rm, 8

Use-cases: Continuous Compliance, Network Segmentation

Use-case: Zero Trust Policies

● Allow specific, deny/audit everything else
○ Process Whitelisting
○ Volume Mount point / File System access whitelisting
○ Process based Network Access whitelisting

Identify process accessing
volume mount points

Identify processes requiring
network access

Identify processes forked in
the pod

Zero Trust
KubeArmor Policy

Hildegard Attack: K8s based TTPs

● Initial Access: Misconfigured kubelet allows anon
access

● Malware attempted to spread over as many
containers as possible using service account
tokens and eventually launched cryptojacking
operations.

● Two C&C conns: Reverse tmate shell and IRC
channel

● Uses a known Linux process name (bioset) to
disguise the malicious process.

● LD_PRELOAD to hide the malicious processes.
● Encrypts the malicious payload inside a binary to

make automated static analysis more difficult.

Recap on Hildegard attack: KubeArmor protection

● Malware attempted to spread over as many containers as possible using
service account tokens and eventually launched cryptojacking operations.

○ Service account token access is strictly controlled.
○ Allow only specific processes to access service account token.

● Two C&C conns: Reverse tmate shell and IRC channel
○ Network access is allowed for known binaries only.

● Uses a known Linux process name (bioset) to disguise the malicious process.
○ FIM disallows modifications in systems binary folder

● LD_PRELOAD to hide the malicious processes.
○ Process execution is tapped in kernel space

● Encrypts the malicious payload inside a binary to make automated static
analysis more difficult.

○ Process whitelisting and binary tracking audits all the events.

KubeArmor Demo Policies
apiVersion: security.accuknox.com/v1
kind: KubeArmorPolicy
metadata:
 name: ksp-mysql-dir-audit
 namespace: wordpress-mysql
spec:
 selector:
 matchLabels:
 app: mysql
 file:
 matchDirectories:
 - dir: /var/lib/mysql/
 recursive: true
 action:
 Audit
 severity: 1

apiVersion: security.accuknox.com/v1
kind: KubeArmorPolicy
metadata:
 name: ksp-wordpress-config-block
 namespace: wordpress-mysql
spec:
 severity: 10
 selector:
 matchLabels:
 app: wordpress
 file:
 matchPaths:
 - path: /var/www/html/wp-config.php
 fromSource:
 path: /bin/apache2

 # cd /var/www/html
 # cat wp-config.php

 action:
 Allow

apiVersion: security.accuknox.com/v1
kind: KubeArmorPolicy
metadata:
 name: ksp-wordpress-sa-block
 namespace: wordpress-mysql
spec:
 severity: 7
 selector:
 matchLabels:
 app: wordpress
 file:
 matchDirectories:
 - dir: /run/secrets/kubernetes.io/serviceaccount/
 recursive: true

cat /run/secrets/kubernetes.io/serviceaccount/token
curl https://$KUBERNETES_PORT_443_TCP_ADDR/api --insecure --header \
 "Authorization: Bearer $(cat /run/secrets/kubernetes.io/serviceaccount/token)"

 action:
 Block

apiVersion: security.accuknox.com/v1
kind: KubeArmorPolicy
metadata:
 name: ksp-wordpress-process-block
 namespace: wordpress-mysql
spec:
 severity: 3
 selector:
 matchLabels:
 app: wordpress
 process:
 matchPaths:
 - path: /usr/bin/apt
 - path: /usr/bin/apt-get
 action:
 Block

Lateral Movement Credential Access Execution

Access cloud resources App credentials in config files bash/cmd inside container

App credentials in config files Access container service account
13

Point in case (demo): HashiCorp Vault

● Customer secrets are kept in persistent volume mounted in vault-* stateful sets/pods
● Usually on /bin/vault accesses this volume mount points

14

Ransomware Attacker’s sweet spot

Organizations will pay for getting back access to their secrets.

15

KubeArmor Protection

16

KubeArmor Protection

● Only /bin/vault process to access /vault/ folder.
● Allow execution of specific processes only

○ /bin/vault
○ /bin/vault-tool

● Multicloud support
○ Supported on all managed/unmanaged cloud platform

● Integrate in CI/CD pipeline

apiVersion: security.kubearmor.com/v1
kind: KubeArmorPolicy
metadata:
 name: ksp-vault-protect
 namespace: vault
spec:
 severity: 7
 selector:
 matchLabels:
 app.kubernetes.io/name: vault
 component: server
 file:
 matchDirectories:
 - dir: /vault/
 recursive: true
 action: Block
 - dir: /
 recursive: true
 - dir: /vault/
 recursive: true
 fromSource:
 - path: /bin/vault
 process:
 matchPaths:
 - path: /bin/busybox
 - path: /bin/vault
 action: Allow

Block access to
/vault/

Allow access to
/vault/ from /bin/vault

only

Process
Whitelisting

17

● Deploys as a DaemonSet
● Operates across any k8s

provider or onprem
● CRI supported: docker,

containerd, crio

5G security work in progress context to KubeArmor

● 5gsec.com
○ SRI + Ohio State University + KubeArmor

● 5G SBP (Super Blue Print) (ref)
● LF Edge Open Horizon POC (ref)

https://5gsec.com/5G_Security/Our_Mission.html
https://wiki.lfnetworking.org/pages/viewpage.action?pageId=82905466
https://open-horizon.github.io/docs/kubearmor-integration/docs/README/

What could be the next steps?

